
KANBAN "BLUE BOOK" EXTRACT

The Microsoft

XIT Sustaining Engineering Story

CHAPTER 2

A Former Athlete's New Challenge

“Kanban only works with small, co-located teams!” This was a widely held belief, around the time of the

publication of the first edition – a belief that lingers to this day. It is, of course, a myth! It was an

assumption based on an understanding that standing “looking at the board” was the core, essential

element of the approach. Consequently, there were plenty of so-called “experts” willing to state publicly

and categorically that Kanban didn’t work with geographically distributed organizations. If people couldn’t

stand together in front of the board, it was postured, then clearly Kanban had nothing to offer. There is a

huge irony in this myth. To explain why, the next two chapters tell the story of how we got started with

Kanban...

Dragos Dumitriu is friendly, jocular, Romanian-American with a winning smile and an enthusiasm for life

that seems to compel people to like him and attract them to follow his lead. Tall, bald, solidly built and

spreading only slightly with the onset of middle age, he cuts a dashing figure in his handmade, tailored

European suits and expensive sunglasses. Though 20 plus years living in the United States has softened it,

he still has a distinct eastern Europe accent. As a package, there is something just a little intimidating

about Dragos: something that says “I’m in charge. There will be no nonsense!” You can imagine smalltime

gangsters running the other way at the sight of him, as he emerges from a large BMW, in downtown

Bucharest.

His physique is a legacy from his past, as a young athlete, in the Romanian Olympic team. As a young adult,

he owned and managed a fitness center in his native Romania, worked as a stunt double in movies, and

as a personal body guard. He’s the personification of the expression “larger than life character.” Moving

to New York with his then wife, a successful doctor, he took a low paying job in a psychiatric hospital and

two years later had risen to manage it. Following his wife to Fargo, North Dakota, a remote city in the

northern central part of the United States, perhaps best known for the movie and spin-off TV show of the

same name, and infamous for its bitterly cold winters, he joined Great Plains Software as a project

manager. Already well into his 30s, it was his first experience in the IT industry.

Following the acquisition by Microsoft to create what is now known as Dynamics, Dragos transferred to

Seattle in 2003 and found himself in the IT division as a program manager. The following year, ambitious

for a challenge, he volunteered to take command of the small sustaining engineering team in the XIT

business unit – a team that was known for having the worst customer satisfaction record across all of

Microsoft’s IT organization.

XIT Sustaining Engineering

At the time, Microsoft was divided into 7 different businesses, each with its own profit & loss statement.

Units such as Windows, Office, Developer Tools, MSN, Hardware, Xbox and Dynamics were all treated like

separate businesses. In addition, there was a corporate headquarters unit containing shared services such

as human resources, finance, facilities management and security. Each of the seven business units plus

the corporate function had its own IT function for a total of eight distinct IT services groups. XIT served

corporate shared services and provided IT support and applications for services such as finance and

human resources. It was led by Dale Christian, General Manager, who was later to serve as CIO of Avanade,

and later still, CIO of The Bill & Melinda Gates Foundation. The Sustaining Engineering team was a small

team tasked with minor feature upgrades and bug fixes “off-cycle” and outside of major releases and

application upgrades. From an accounting perspective, XIT Sustaining Engineering, was an operating

expense, while project teams working on the major project portfolio were considered capital expense.

These are two different budgets and while capital expense is an asset, operating expense is pure cost. This

had an impact on both policy constraining behavior and decision making.

The team Dragos volunteered to lead was located in Hyderabad in India, in a so-called “captive” center or

campus, built by the outsourcing firm TCS, specially for Microsoft. A few short years earlier, Microsoft had

made a strategic decision to outsource its IT function. IT wasn’t core to Microsoft’s mission or its identity

rather it was an enabling function. It was reasonable then that IT could be provided as a service from afar.

It was hoped that existing developers and testers working in IT on Microsoft’s campus near Seattle, could

be repurposed to work on products within one of the other seven business units. Most of this switch had

happened in 2003 and what remained of IT was largely a vendor management organization, consisting

mainly of individual contributors with the job title program manager. Dragos’ job was to lead and manage

the small 6-person Sustaining Engineering team working in Hyderabad. For context, Seattle is, depending

on the time of year, either 12.5 or 13.5 hours behind Hydrabad. This time difference creates both

challenges and opportunities when managing vendors in India remotely from the west coast of the United

States. The advantage is that things can happen overnight. The disadvantage is that synchronous

communication such as conference calls are challenging to schedule, and that by Friday in Seattle, it is

already Saturday and the weekend in India. There are effectively only 4 days per week available for

managing across this time difference.

As mentioned already the team had the worst record for customer service across all of Microsoft’s IT

functions. This organization had stubbornly refused to show improvement. After the switch to a new team

offshore, at the TCS facility in Hyderabad, things had not improved. So, all of the personnel had changed,

the management had changed, and the service was now provided by a vendor with a master services

agreement and yet things had not improved. So hopeless was the performance of XIT Sustaining

Engineering that the program manager position had been vacant for some months – no one wanted it.

Into this scene Dragos arrived, ambitious, always up for a challenge, a born leader, and keen to make

a mark, be recognized and hopefully rewarded with greater responsibilities in future, he volunteered

for the job. A few of his colleagues thought he was crazy.

A friend of mine is a former Winter Olympian from the Austrian team. She competed in the

luge at the Salt Lake City Olympics in 2002. Nowadays, she's a coach for the Austrian national

youth team (18 years and under). Chatting with me in 2009, she advised me that when looking

to hire new personnel for my business, "always look out for athletes."

"They have discipline. They know how to set goals. They are motivated. They know how to

measure performance and they take an organized approach to training and improved

performance." I thought of Dragos, how well he fitted this description and how valuable these
characteristics were to his role at Microsoft.

At this point, it's worth reflecting on why I spent so many words familiarizing you with Dragos. I want

to lay the foundation to dispel another myth: the myth that Kanban would only work when it was led

by remarkable, larger than life, characters like Dragos. The results Dragos achieved as you'll learn in

chapter 3 are remarkable. Heck, I wrote two chapters of a book about them! It's been easy for people
to dismiss these results as uniquely attributable to his character and not the method he was following.

As you'll see towards the conclusions of chapters 3 and 4 this simply isn't true. Dragos doesn't have

to be in the room in order for you to garner the same scale of results. You need to follow his method,

his way of thinking. You need to follow the Kanban Method. Yes, leadership is truly required but you

don't have to be a former Olympian for it work for you.

Dragos and his team were responsible for the software maintenance for the XIT business unit. He

was the program manager for the XIT software maintenance service, known as Sustaining

Engineering. His team provided two basic services: minor upgrades (known as change requests); and

defect fixes. The team (shown in Figure 2.1), consisting of 3 software developers, 3 testers and a local

function manager (2nd left in the photograph), developed minor upgrades and fixed production bugs

for about 80 cross-functional IT applications used by Microsoft staff throughout the world.

I had joined Microsoft’s Developer Tools division in September 2004 and hence Dragos and I were

colleagues in different business units. We were yet to meet.

Figure 2.1 Dragos pictured with the XIT Sustaining Engineering team in Hyderabad circa February

2005

The Problem

By summer of 2004, senior management and customers were out of patience. Something had to be

done! Dragos volunteered to take charge. He loved this sort of challenge. He spent his first few weeks

watching, learning, understanding, observing, and examining data from their tracking system. He

wasn't tasked with filling the shoes of his predecessor. He was asked to do more than just fill the
position and crank the handle of the existing broken process. Dragos was told to make changes - to

fix whatever it was that was broken.

He quickly understood the customer dissatisfaction to be rooted in long lead times, unreliable

delivery, and broken promises for what seemed like small, highly achievable, and often important

changes and bug fixes. His team maintained applications such as the human resources employee
records system and the payroll system. These were used by finance to enable salary payments to

most of Microsoft's global workforce. To understand the nature of their work, let's consider a

strawman business initiative and how it might impact XIT's applications. Let's imagine that Microsoft

plans to open a new office in San Juan, Puerto Rico. Puerto Rico is a protectorate of the United States.

They use the US Dollar. In many ways, Puerto Rico is similar to one of the states of the United States.

Hawaii had similar status until 1959 when it became the 50th state of the United States.

You can imagine a business initiative such as opening a new office in San Juan will create impact

for all of XIT's corporate shared services customers: finance will need to make payroll for Puerto Rican

employees; human resources will need to store employee records for those employees as well as

facilitate recruitment on the island; facilities management will need to provide an office building and

allocate space to departments, and offices to individuals; while security will need to secure the

premises and have a capability to print employee badges, and enable security scanners on entrances

and exits.

One of the organizational dysfunctions is that often the high-level business objective or initiative

was opaque to the workers in XIT. The business initiative would manifest as requests for support from

each of the shared services who would in turn work with their product managers to push requests

for changes to IT systems through to the sustaining engineering team. Requests would therefore

appear in isolation, apparently independent, when in fact they may have been value in understanding
them as a dependent set. Sustaining Engineering were set up as order takers, and the orders were

for small changes, delivered in short order. Context was missing.

Fixing this bigger more strategic dysfunction was not part of Dragos' remit. His job was to make

Sustaining Engineering better order takers, to make them fit enough to deliver what was asked of

them.

So, you might imagine that requests might look like, "support Puerto Rican address format in the

employee records system" or "support Puerto Rican tax withholding for payroll for Puerto Rican

employees." These will break down into details such as "Add Puerto Rica to the drop-down menu of

States of the United States on the employee address form". Any lay person familiar with using

personal computers could understand that from a business owner's perspective these seem like

simple little changes. Why then were they taking months? And why was the IT group constantly

breaking delivery promises? It is easy to understand the frustration of the customers in finance, HR
and the other shared corporate services.

Current Capability

The Sustaining Engineering team had an average five-month lead time on change requests and

this, along with their backlog of requests, was growing uncontrollably. Not only was the average lead

time already unacceptable, it was likely that for any one item the lead time from commitment to

delivery was between 6 weeks to greater than 1 year. As a service, they were slow and unpredictable.
They had a habit of promising delivery dates and then failing to meet them.

Constraints

The programmers and testers working for TCS were following the Software Engineering Institute’s

Personal Software Process/Team Software Process (PSP/TSP) methodology. Microsoft mandated this

contractually with TCS. This choice had been made by Jon De Vaan, the Vice President of Microsoft’s

Engineering Excellence group. Jon reported directly to Bill Gates in his role as Chief Architect as well

as Chairman of Microsoft. Jon De Vaan was a big fan of Watts Humphrey1 of the Software Engineering

Institute at Carnegie Mellon University. Humphrey had been recognized for his contribution to the

professional of software engineering as a recipient of the National Medal of Technology awarded by

the President of the United States. Humphrey was the creator of the Personal Software Process/Team

Software Process and De Vaan had been looking for an opportunity to experiment with it at Microsoft.

Unable to gain traction for it on product teams, he had been granted the opportunity to run his

experiment with the IT division. Consequently, contractually obliging TCS to follow it. Jon De Vaan

was an early developer at Microsoft and a trusted friend of Bill Gates. Sometime later, when the

Windows Vista project went off the rails and had to be reset as Windows 7, it was to Jon that Bill

turned as the person to lead the recovery. In 2004, as head of Engineering Excellence, no one was

going to challenge the preferences of Jon De Vaan. This meant that changing the process used by the

Sustaining Engineering team, changing their software development lifecycle method, was not an

available option. This constraint turned out to be a stroke of luck! Dragos was forced into starting
with what the team was doing now.

The perception was of a team that was badly organized and managed. As a result, senior

management was not disposed to provide additional money to fix the problem.

Sustaining Engineering were order takers for small, short-order requests seen in isolation, they

were a cost center, their hands were tied regarding their choice of working processes, and

management was unwilling to provide additional funding to enable improvements – there was no

appetite to throw more people at the problem.

By sheer coincidence Dragos had discovered my first book, Agile Management for Software

Engineering. Impressed with what he’d read, he asked for my advice. I arranged to visit him in his

office in building 115 on Microsoft’s campus in Redmond, WA in the leafy green eastern suburbs of

Seattle. The interaction, interview and analysis described below has been formalized into the first

steps of the STATIK (systems thinking approach to introducing Kanban) method. This method is
described fully in chapter pp.

Visualize

To begin to understand the problems, I asked Dragos to sketch the workflow. He drew a simple stick-

man drawing describing the lifecycle of a change request, and as he did so, we discussed the

1 https://en.wikipedia.org/wiki/Watts_Humphrey

problems. Figure 2.2 is a facsimile of what he drew. The PM stick figure represents Dragos.

Requests were arriving uncontrollably. Four product managers represented and controlled

budgets for the customers functions named previous, such as Finance, Human Resources, Facilities
Management and Security. Request were for small upgrades but also included production defects

(problems discovered in the field by end users). These defects had not been created by the

maintenance team, but by the application development project teams. These project teams were

working on the major project portfolio and their work was considered a capital expense, or an asset.

Those application development teams were generally broken up one month after the release of a

new system, after the end of the so-called "warranty period," and the source code was handed off to
the Sustaining Engineering team for further maintenance. While many readers will recognize this

dysfunctional pattern. We weren't in a position to do anything about it. Our job was to make the

sustaining engineering team better and faster at fixing bugs, not to help XIT as a whole, reduce the

quantity of defects created. This was therefore another constraint. We were not in a position to shape

demand or enact changes that would reduce demand. Sustaining Engineering were order takers.

Figure 2.2 XIT Sustaining Engineering Workflow

Demand & Capability Analysis

When each request for a change or defect fix arrived from a product manager, Dragos would send it

to India for an estimate, as illustrated in figure 2.3. The policy was that estimates had to be made and

returned to the business owners within 48 hours. This would facilitate making some return-on-
investment (ROI) calculation and deciding whether to proceed with the request. Once a month,

Dragos would meet with the product managers and other stakeholders, and they would reprioritize

the backlog and create a project plan from the requests.

Due to the service level agreement to return estimates within 48 hours, they preempted existing

planned work already in-progress. Effectively, gathering information for future speculative work, was

treated with greater urgency and importance than completing existing planned and committed work.

Figure 2.3 Illustrating how requests for estimates disrupted planned work

The estimates for new incoming work were consuming a lot of effort. Despite being referred to as

“rough order of magnitude” (ROM) estimates, the customer expectation was actually for a very

accurate estimate, and team members had learned to take great care over preparing them. The root

cause of this was that estimates were used both as input to ROI calculations and hence prioritization

decisions, but also as a means to cost a request, for the purpose of interdepartmental budget
transfers.

Bizarrely, payment for the work done by XIT Sustaining Engineering was made based on the

estimate rather than the actual time spent doing the work. It appeared from our analysis that

Microsoft corporate functions were effectively "paying" XIT in advance for each request. While this

seemed truly bizarre, we decided to let it go unchallenged. You need to pick your battles, and a candid

discussion with a VP of Finance who had made the policy decisions on how sustaining engineering
work should be accounted for, i.e. as operating expense, and how it might be paid for from requesting

business unit budgets, was not something that either of us relished. We didn't have the pay grade or

the respect within the firm to even suggest such a meeting. Like the contractual requirement to use

the Software Engineering Institute's PSP/TSP methodology, the finance policies were, at least for us,

an immovable object, a constraint around which we had to work. We had to be successful despite

these rules. It wasn't acceptable to point the blame at them and wash our hands of further

responsibility.

Each of these high precision estimates was taking about one day for each developer and tester to

produce. The fear of getting it wrong was driving them to do analysis and design work just to develop

an estimate. Of course, this analysis and design work was thrown away, and not preserved such that

it might be re-used later.

At this time the requests for estimates ranged between 18-25 per month. We quickly calculated
that the estimation effort alone was consuming 7 or 8 working days per person each month.

Consequently, 33 to 40 percent of capacity was being used to assess the viability of uncommitted

work. At least one third of capacity was used to speculate about future work, in preference to working

on coding and testing for current committed work. There was no governance over the number of

requests for estimates and hence the impact of estimating was potentially unlimited. Estimating

these new requests pre-empted existing work and caused delay. Given that it was ungoverned, it had

the potential, though apparently it had never happened, to completely halt all current committed
work. Consequently, estimating randomized plans made for any given month, and resulted in work

being completed behind schedule. In fact, demand for estimation was sufficiently high, and its impact

pre-empting committed work so great, that XIT Sustaining Engineering were incapable of delivering

anything against plan. Their currently delivery capability was effectively 0% on-time.

While the demand for estimates was 18-25 per month, the number of items being delivered was
around 6 per month2, as shown in figure 2.4. The backlog which had 80 or more items in it as of

October 2004 was growing though not as quickly as it should be, if we looked at the demand for

estimates. What was going on?

Figure 2.4 Demand for change requests versus capability to supply over the previous 9 months

A study of all items closed, whether complete, discarded or abandoned mid-flight, showed that

48% of requested submitted were never actually delivered. This explained why the backlog wasn't

growing as rapidly as might be expected. Nevertheless, the growth was typically greater than 6 per

month. Of the items never delivered 26% represented items discarded during planning because they
had a poor ROI, or because they were "too big". Items estimated as greater than 15 days of

engineering had to be redirected to a major project in the portfolio in order to be accounted for as

capital expense. This governance rule was intended to enforce the notion that maintenance work,

accounted for as operating expense, was only ever for small items. Historically, the "too bigs" were

only 2% of demand. Hence, low ROI represented 24% of demand. The remaining 22% were

abandoned and closed with the reason "overtaken by events". This was often caused by the

decommission of an application or intranet site. For example, in 2003, there was a huge earthquake

and subsequent tsunami off the coast of Sumatra, Indonesia. The tsunami wave took the lives of over

2 In 2 of the 3 quarters shown in figure 4.3 the delivery rate is approximately double at around 12 per month. This
gives a false impression of capability. During this six month period, Microsoft management had doubled the
staffing level in an attempt to reduce the backlog and allow TCS taking over as the vendor to start their contract
with a relatively small backlog. From July 2004, staffing had returned to historical levels and the delivery rate
returned to similar historical levels of approximately 6 items per month. Unfortunately, we do not have a chart of
this earlier period.

250,000 people in Indonesia, Thailand, Sri Lanka and South East India. At the time, Microsoft had

created a website to enable employees to make donations and these were distributed to charities

such as the Red Cross. This site was no longer required some 18 months later, and it was
decommissioned. Other such examples, were often season in nature or for one-off events.

We can summarize our demand and capability analysis as follows:

• Speculative work requiring an estimate and business case 18-25 per month

• Actual committed work, planned and sequenced 9-13 per month

• Work actually delivered each month, approximately 6 items
While we can summarize delivery capability as

• lead time was on average 5.5 months and growing at a rate of at least 0.5 months per

month

• Items delivered against original planned and committed dates was approximately 0%

While only 6 or so items were delivered each month, the entire backlog was reprioritized and re-

planned each month. While approximately 12 items were discarded or abandoned, a similar number

were committed, sequenced and added to the plan implemented as a Gaant Chart in Microsoft

Project. In Kanban language, work was committed early, at the monthly planning meeting after the

request was submitted. At the time of commitment, each item would have a proposed delivery date.

Around 6 items would be delivered over the next month. However, the committed backlog would be

at least 80 items. New requests would have arrived meantime, and all the undelivered work would

be reprioritized at the next monthly planning and the new plan with new dates for each item,

recommunicated to stakeholders. It was likely that a typical request would be replanned 4 or 5 times

prior to delivery. This was a key factor in customer dissatisfaction and a lack of trust in the sustaining

engineering service. They were simply not capable of keeping their promises.

The problem was two-fold: they were committing too early, to too much; and even for the

immediate month ahead, they were over-committing because the disruptive effect of the requests
for estimates wasn't be taken into account.

Flow Efficiency

The requests were tracked with a tool called Product Studio. An updated version of this tool was

later released publicly as “Team Foundation Server Work Item Tracking.” The XIT Sustaining

Engineering team was similar to many organizations I see in my teaching and consulting work—they

had lots of data, but they were not using it. Dragos began to mine the data and discovered that an

average request took 11 days of engineering (a combination of development and testing time) as
shown in histogram in figure 2.5. However, lead times of 125 to 155 days were typical. More than 90

percent of the lead time was queuing, or other forms of waste. They were only 8% flow efficient.

While this sounds very poor, we've come to realize that often the starting condition for improvement

is well below this. Hakan Forss3 and Zsolt Fabok4 have both reported starting flow efficiency numbers

of 1-2%. These numbers are widely accepted amongst the Kanban coaching community as typical.

3 Hakan Forss, Lean Kanban France, Oct 2013
4 Zsolt Fabok, Lean Agile Scotland, Sep 2012, Lean Kanban France, Oct 2012

The good news, whether we have 8% as we did in 2004, or a much lower number, is that there is a

huge potential upside. Improving flow efficiency and dropping lead times, should be a matter of

identifying and eliminating sources of delay.

Figure 2.5 Histogram showing actual development & testing time per change request

Additional Work Item Type

In addition to change requests and defect fixes, there was an additional type of work, known as

production text changes (PTCs). The origin of these was text changes to on-screen dialog boxes or

web pages. This had grown to include graphical or web page design changes and eventually expanded
to involve modifying values in tables used to drive business logic in applications or XML files used for

configuration or reference while an application was running. We later discovered that for example,

the tax tables, for the payroll system, which contain the income tax deductions to be withheld by the

employer, fell into this category of work. The acronym PTC was meaningless! The common element

was that these changes did not require a developer and were often made by business owners,

product managers, or the program manager, but they did require a formal test pass, so they affected
the testers. PTCs all had a common workflow. However, their nature, the business risks associated

with one item compared to another varied greatly: changing a department logo on an intranet web

page clearly does carry the same risks as deploying the new withholding tax tables on the payroll

system. And this was another problem, PTCs were given their own class of service. They were all "top

priority", effectively, expedite requests. At the time, we didn't understand why. We didn't have

enough insight into the true nature of PTCs. Inherently, it just seemed wrong. Why were "text

changes" being expedited? It was a red flag but at the time we chose to ignore it. All we knew was

that PTCs were disruptive, that they pre-empted planned and committed work, and they affected our

ability to deliver that planned work on-time.

I asked Dragos about the nature of arrival of PTCs and the volume of demand. His response was

that they were unusual and weeks would go by without a single request then without much warning

a whole batch would arrive. There sporadic nature and demanded class of service made PTCs a

problem. A problem that today we teach Kanban practitioners the skills to understand and design for

adequately. In 2004, we ignored them. As you will learn in the next chapter, we got away with it for

two reasons: because the improvement in general performance was so great that there was capacity

to cope with PTCs; while their arrival impact was much less disruptive, merely a ripple because of the

1 to 2
3 to 5

6 to 10
11 to

15
> 15

0

5

10

15

20

25

C
h

a
n

g
e

 R
e

q
u

e
s

ts

Effort in Days

Dev Test

WIP control and deferred commitment benefits from using a kanban system.

From Understanding a Problem to Designing a Solution

Now that we understood the problems and the constraints within which we had to work, the focus

turned to what we might do about it. You'll learn what Dragos chose to do, and how he enabled it to
happen in chapter 3.

Takeaways

The first known and documented kanban system for intangible goods, professional services was

implemented with the XIT Sustaining Engineering software maintenance team at Microsoft,

starting in 2004.

It used an electronic tracking tool. Sometimes this is referred to as a “virtual kanban system.”

It was implemented with an offshore team at TCS in Hyderabad, India.

Workflow for a service should be sketched and visualized.

The process should be described as an explicit set of policies.

Demand & capability analysis should be conducted

Sources of customer dissatisfaction should be identified and understood

Analyzing flow efficiency helps us to understand the potential improvement possible

Typically flow efficiency is very low, e.g. 5% or less before any interventions are made

CHAPTER 3

"Do you think they'll go for that?"

“So, our proposal is that we’re going to stop estimating, and stop planning, and ask them to trust that

this will magically result in everything being delivered within 30 days?”

“Yes! Do you think they will go for that?”

Dragos and I looked at each other across his office, in building 115 of Microsoft’s campus in Redmond,

Washington. It was a dark, dreary, cloud-covered, rainy day in the fall of 2004.

“No. Probably not!”

This is the story of what Dragos did and how he got it done. The results are now legendary. The delivery

rate of change requests jumped by 230%, while lead times fell from an average of 5.5 months to a mere

12 days, and on-time performance rose to 98% against a 25-day service level agreement. Dragos was

promoted then later headhunted when Dale Christian moved from GM of XIT to the position of CIO at

Avanade. In two moves, in two years, he was now Senior Director for Global IT Operations of the

Accenture/Microsoft joint venture company, from his position as program manager of a 6-person team,

only two pay grades above a university graduate at Microsoft. The XIT Sustaining Engineering service

team moved from having the worst customer service record within Microsoft’s IT group to the best,

while Dragos was rewarded with the division’s process improvement award for the 2nd half of 2005.

How Policies Affected Performance

The team was following the required process that included many bad policy decisions that had been

made by managers at various levels often in isolation and without due consideration for the wider

impact on the service as a whole. It is important to think of a service and its workflow as defined by a set

of policies that govern behavior. Someone has the authority to override or change policies. They are

under management’s control. For example, the policy to use PSP/TSP was set at the executive vice-

president level, one rung below Bill Gates, and this policy would be hard or impossible to change.

Policies on accounting and budget transfers were made by a mid-ranking executive in the Finance

department and these policies would also be difficult to change. Policies on prioritization and the use of

ROI calculations in businesses cases were made by the PMO and required of product managers. While

not impossible to change, neither Dragos nor I had the pay grade or the influence to affect change there.

However, many other policies, such as the policy to prioritize estimates over actual coding and testing,

were developed locally and were under the collaborative authority of the immediate managers. It is

possible that these policies made sense at the time when they were implemented; but circumstances

had changed, and no attempt had been made to review and update the policies that governed the

team’s operation. There was scope to change some policies and affect improvements in performance

despite the other constraints.

No Estimates

After some discussion with his colleagues and manager, Dragos decided to enact two initial

management changes. First, the team would stop estimating. He wanted to recover the capacity wasted

by estimation activity and use it to develop and test software. Eliminating the schedule randomization

caused by estimating would also improve predictability, and the combination would, he hoped, have a

great impact on customer satisfaction.

However, removing estimation was problematic. It would affect the ROI calculations, and customers

might worry that bad prioritization choices were being made. In addition, estimates were used to

facilitate inter-departmental cost accounting and budget transfers. Estimates were also used to

implement a governance policy. Only small requests were allowed through system maintenance. Larger

requests, those exceeding 15 days of development or testing, had to be submitted to a major project

initiative and go through the formal program management office (PMO) portfolio management

governance process. We will revisit these issues shortly.

Estimates were disruptive and affecting ability to deliver against promised dates. The lack of

predictability was affecting customer satisfaction. Had Dragos chosen to fix this one issue of

predictability then perhaps he would have made a different choice. Deciding not to estimate was a

choice made to give back at least 1/3rd of capacity spent on it and improve predictability. There were

actually four choices available to us for consideration: stop estimating; time slice estimation activities,

separately from value-added committed work delivery; isolate estimation with a specialist role of

“estimator”; develop a hybrid system of passing a specialist estimator role around from one team

member to another with a fixed cadence such as weekly. Let’s consider each of these approaches in

turn…

• To stop estimating altogether is the most radical choice. It requires that we introduce a

service level agreement. This gave back wasted capacity, but it required a new

agreement, a new contract, with the customers. It is the boldest choice.

• The time-slicing approach of containing estimating, prioritizing and planning, into a fixed

time period then task switching between customer-valued work, and such planning, is

the approach used in the Agile software development lifecycle methodology, Scrum. To

have made such an approach work at XIT, Dragos would have needed to allocate 8 days

per month for estimating and planning, and then spend the remainder of the month

coding and testing. This approach would have improved predictability and helped

dramatically with customer satisfaction, but it did nothing to address the approximately

1/3rd of capacity being sucked away by estimation effort.

• The choice of assigning a specialist could also have worked quite nicely in this case.

Dragos could have informed the local manager at TCS in Hyderabad, that one of the

developers and one of the testers were to be permanently assigned to analysis and

design in order to provide estimates. A simple policy change! This would have prevented

the other two developers and two testers from being disrupted and resulted in

significant on-time delivery improvement. However, it would also have made it

abundantly clear that 1/3rd of capacity was being used for estimating.

• The third option of passing the estimation responsibility around from one team member

to another, on a weekly basis, might have been more acceptable to the team than

assigning a specialist but it still didn't recover the capacity being wasted on estimation.

Only the choice to stop estimating altogether freed up capacity. While customers were unhappy about

unpredictable, unreliable delivery and broken promises, they were also unhappy about lead times. Lead

times were growing because demand exceeded capability to supply. As a consequence, there was a

need to produce more. Recovering 1/3rd of capacity was a means to produce more and directly address

the growing backlog and lengthening lead times. It presented an interesting trade off, in exchange for

replacing individual estimates and delivery date promises with a service level agreement (SLA), 50%

more work would be completed and there was some chance that the growing backlog could be tamed

with long delivery times brought under control, such that product managers and sponsoring customer

departments like HR would find it fit-for-purpose.

Choosing not to estimate, as part of the changes made at XIT Sustaining Engineering was a choice made

because of specific circumstances, and it was a choice made while considering 3 other options. Any of

the other options were possible and viable and would have contributed to fixing a significant issue with

customer satisfaction. Regardless of which choice we had made, we would still have been using a

kanban system. This story would still have represented the prototype for what developed into the

Kanban Method.

In the early days, Kanban was often cited as the “no estimates” method. This created some fear and

trepidation amongst a traditional project management audience, while raising tribal hackles in the

Scrum5 community who had ritualized their Planning Poker and other estimation techniques. Choosing

whether to estimate or not should always be a consideration for the policies that define a class of

service. The risks associated with work should always determine whether it is better to proceed with

what you know, or delay to gather additional information before making a commitment. A request for

an estimate is a request for information speculating about the cost or time required to complete a piece

of work. This information may be useful for risk management in some situations, where in others, it

makes little difference to the good governance of the entity and can therefore by avoided. With XIT,

their customers were used to consuming IT services, defined by service level agreements (SLAs). As a

consequence, Dragos was in a position to make his customers a straightforward offer and trade, “if we

switch to an SLA with a defined lead time expectation, then in return, we will deliver you around 50%

more completed requests each year.”

Limit Work-in-Progress

Dragos also decided to limit work-in-progress and pull work from an input buffer as current work was

5 Scrum is an example of a generic class of prescriptive processes known as Agile software development
methodologies. In software engineering, a methodology is defined as a description of a process workflow, together
with a defined set of roles to be played and the responsibilities those roles carry in the execution of the work.

completed. The input buffer was sized to anticipate the maximum delivery rate within the one week

period between replenishment meetings, i.e. it was just big enough to insure that the developers were

never starving for work and consequently never idle. He chose to limit WIP in development to one
request per developer and to use a similar rule for testers. As the Personal Software Process (PSP) already

recommended this practice, it was in fact, the policy already in use. He inserted a small buffer between

development and test in order to receive the PTCs and to smooth the flow of work between

development and test, as shown in Figure 3.1. This approach of using a buffer to smooth out variability

in size and effort is discussed in chapter 196. The buffer was arbitrarily sized as 5. We didn’t know how

big to make it so we made a guess and decided to empirically adjust its size as we observed how it
worked. If a large batch of PTCs arrived, it is likely the buffer would overflow, having the effect of stalling

upstream development work. Developers would have to wait until the testers cleared the batch of PTCs

and kanbans became free in the buffer to allow finished development work to flow forwards.

Note: This is a policy choice. One change request per developer at any given time is a policy. It can be modified later. Thinking

of a service as a set of policies is a key element of the Kanban Method.

Figure 3.1 a kanban system for the sustaining engineering workflow

No Planning

The monthly planning meeting was to be abandoned and replaced with a more frequent meeting to
replenish the kanban system. There would be no more Gaant charts and no more early commitment

to everything in the plan. The backlog of requests would remain uncommitted until an item was

pulled into the kanban system at the replenishment meeting by consensus agreement of the four

product managers and Dragos as program manager. Dragos had to think about the cadence for

interacting with the product managers. He thought that a weekly meeting to replenish the kanban

system would be feasible. It was planned as a conference call, as the topic of the meeting, would be

the simple replenishment from the backlog, of empty slots, free kanban, in the input buffer. In a

typical week there might be three slots free in that buffer. So, the discussion would center around

the question, “Which three items from the backlog would you most like started next for delivery

Software engineering methodologies describe which role performs which function, who they collaborate with, who
carries responsibility and accountability and how work is handed off from one individual or team or collaborators
to the next. Often methodologies have very specific and detailed guidance on techniques to be used for specific
activities.
6 Of the 1st edition

within 25 days?” It's a simple question and it should facilitate a short meeting. This cadence is

modeled in Figure 4.5.

Note: Cadence is a concept in the Kanban Method that determines the rhythm or frequency of an event. Planning,

prioritization, delivery, retrospectives, and any recurring event can have its own cadence.

He wanted to offer a “guaranteed” delivery time of 25 days from commitment - the point when a

request was accepted into the kanban system and placed in its input buffer. This 25 days service

guarantee was considerably greater than the 11 days of average engineering time required to

complete the job. The statistical outliers required around 30 days, but he anticipated very few of

them; 25 days sounded attractive, especially compared to the existing lead time of around 140 days.

He expected to hit that target with regularity, building trust with product managers and their
customers as he went.

So traditional planning with a Gaant chart, with anticipated start and end dates for each request,

and therefore specific promised delivery dates for each item, were to be discarded and replaced with

a simple service level agreement with a 25 day or less service level guarantee on lead time from

commitment to delivery.

Sitting in Dragos' office, we had an understanding of the problems and a design for a solution. We

looked at each other, Dragos was giggling,

“So, our proposal is that we’re going to stop estimating, and stop planning, and ask them to trust that

this will magically result in everything being delivered within 30 days?”

“Yes! Do you think they will go for that?”

“No. Probably not!”

It was going to take more than a strong logical argument to get people on board.

Who might object and why?

Let's consider each of the changes in turn and think about how the proposal might be received in

isolation.

First, we propose to stop estimating. Developers and testers find estimation disruptive and it

impacts their ability to good, high quality work. Also, they are professionally qualified in software

development and testing, they have degrees and certifications in this subject. No one ever asked

them to study, sit an exam or acquire a certification in estimation. An ability to estimate is not core

to their identity or how they derive their professional pride or self-esteem. If we tell the team in

Hyderabad that we no longer require them to make estimates, they will celebrate.

Next there is the program manager who facilitates making the plans and own the plan constructed

in a Microsoft Project Gaant chart. If we tell the program manager that estimates will no longer be

produced and that Gaant charts are no longer required, there is likely to be some resistance. It is
highly likely that the program manager as a self-image of project manager, and many such people in

that position were members of professional organizations such as the PMI7 and held credentials and

qualifications such as the PMP8 for which they had studied and passed an exam. To suggest that we

remove the practice of planning and the production of a Gaant chart from these people, would likely
be interpreted as an attack on their identity, a show of disrespect, and an indication that their skills

and hence, they, were no longer valued. However, in this case, the program manager was Dragos,

the former Olympic athlete, stuntman, bodyguard, and psychiatric hospital manager. He wasn’t

vested in any of this professional project manager identity. And so we got lucky – Dragos was the

change agent, he was the instigator, not someone objecting and being obstructive. Had this not been

the case, it could all have died there and then. Perhaps we wouldn’t have Kanban as a management
method adopted globally? Perhaps there would never have been a first edition of this book, or any

other book on the topic.

Lastly, we have the product managers. There role had three main aspects to it: managing the

budget on behalf of their customer and business owners; assisting customers to elaborate

requirements and performing business analysis; providing good governance over the budget by

building business cases and prioritizing the work based on optimizing the return on investment.9 The

equation used was as follows

Business value

ROI = --------------------------------------

Cost

Cost = hour rate x estimated engineering hours

Without an estimate, there would be no value for the denominator in the ROI equation and

consequently it would be impossible to calculate. Stopping estimation denied the product managers

the ability to complete their business cases and to perform their prioritization function by stack

ranking requests by ROI10. And this is a key reason, why we believed “they” would go for it.

Our second proposal was to implement a kanban system to pull work from an uncommitted
backlog. Rather than making early commitment, we intended to defer commitment.

In this case, the developers and testers are unmoved and unaffected by the change. So, we

wouldn’t expect any resistance. And once again, Dragos was the program manager and the change

agent. However, this was a change for the product managers and their customers in each respective

business unit. They were used to being given firm plans within a couple of weeks of submitting a

request. However, they were also used to the idea that the plan was worth nothing and that the

sustaining engineering team never delivered anything when promised. Our approach to this first to

show them the abandoned and discarded data. Only 52% of requests were ever delivered. Why

commit to all of them when 48% of them never made it into production? This technique has proven

powerful and persuasive in many implementations since then. It is particularly persuasive when you

7 Project Management Institute
8 Project Management Professional
9 This method of prioritization intended to maximize return on investment is described in the Project Management
Body of Knowledge published by the Project Management Institute and it is widely adopted globally as the
standard way to prioritize professional services, and knowledge worker activities.
10 Note: This was usually performed in an Excel spreadsheet using the column sort function. ROI was a simply ratio
achieved by dividing two numbers. Business value it was assumed could be reduced to a simple dollar amount. This
is actually standard practice in product and project management.

have those affected do the data mining and discover for themselves just how many requests they

make are never implemented. Sometimes it is necessary to put a definition, and explicit policy on

“abandoned”. What does it mean to be abandoned? If a request is older than 6 months, or 12
months, or 13 months, or 2 years then is it abandoned? Where is the organization’s tolerance and

threshold for, “if we haven’t gotten to it yet, we probably never will.” When you make this data

explicit, it becomes hugely powerful.

The change to a pull system was coupled to the adoption of a service level agreement, effectively

aggregating delivery risk across all requests rather than making fragile, individual commitments

based on speculation. The business units were used to consuming other IT services defined by a
contract, a service level agreement, including guarantees on delivery lead times. So, in this case,

they were being asked to switch modes and see this work different. Rather than see it as a series of

mini-projects, instead they should view it as a continuous service. This argument appeared to work

and raised little objection. Things had been broken for so long, why not try this alternative, yet

familiar approach?

Lastly, we proposed to stop planning. Once again, this made little to no difference to the

developers and testers. They were used to picking up their work from a sequence defined in a

project plan. Instead, they would pick up their work from a buffer, defined in their existing tracking

tool, Product Studio. And once again, the program manager was Dragos, so no resistance from him.

What about the product managers? From their perspective they were being asked to attend a

weekly replenishment meeting rather than a monthly planning meeting. Other aspects of planning

which they owned such as preparing business cases, and producing a prioritized backlog were

unaffected, assuming there could be resolution to the ROI calculation conflict.

Actually, the planning meetings were long and laborious with a large plotted Gaant chart on the

table being marked up in pencil. These meetings weren’t anyone’s idea of fun and they took many

hours. A short, 15-20 minute, call once per week, sounded like significant relief, assuming

everything else worked effectively and they continued to look professional, competent and

effective in their roles.
Finally, we haven’t considered Dragos’ upline managers. What did they think?

By all accounts, Dragos’ immediate manager had misgivings and was fearful of the consequences.

The next two layers up simply died laughing, “your going to stop planning and stop estimating and

everything will be fine???” Once, they’d sobered up a bit, they were able to reason about it, “This

service has been broken for a long time. A succession of former managers has been unable to fix it.

Moving it offshore didn’t fix it either. This sounds utterly crazy but we put you in the job to make

changes. If these are the crazy changes you want to make then at least we should give them a try.”

So, the senior management were prepared to hold their breath and wait and see.

However, there was still the issue of how to enable the product managers to continue making

their business cases, and prioritization decisions without an estimate. The solution to this was the

spark of genius that together with Dragos’ diplomatic skills and personality were to enable the first

kanban system implementation at Microsoft.

Shuttle Diplomacy

Dragos arranged to visit each of the product managers in their offices individually, and then their

immediate manager. He wanted to get each of them on-board with our proposal without the

influence of their peer group or social pressure causing them to close ranks and conservatively stick

to their existing modus operandi. If he could get them on-board individually then he'd hold a group

meeting for the official kick-off of the change initiative and the rollout of the kanban system.
Along with the basics of a sketch of the workflow and the proposed kanban system, figure 3.2,

together with a description of the replenishment meeting, Dragos brought the chart showing the

distribution of engineering effort for requests over the past year, previously shown in figure 2.5 and

repeated here for your convenience as figure 3.3.

Figure 3.2 The full solution proposed for the XIT Sustaining Engineering workflow

Figure 3.3 Histogram showing actual development & testing time per change request

Dragos suggested to each product manager that the distribution of effort was within a relatively

narrow range and most requests fell within the range 3 to 10 days of development and test with a
mean of just under 6. Given the volume of requests and that we fully expected this volume to increase

dramatically, that it was reasonable to replace a specific, deterministic, though still speculative

estimate, with an average extracted from recent historical data based on actual hours spent. An

average of actual hours spent is a fact where an estimate for any individual item is merely speculation.

1 to 2
3 to 5

6 to 10
11 to

15
> 15

0

5

10

15

20

25

C
h

a
n

g
e

 R
e

q
u

e
s

ts

Effort in Days

Dev Test

Business value

ROI = --------------------------------------

Average Cost

Essentially, if the product managers were willing to accept that cost varied within a tight range

and effectively ignore this variation, then all the other benefits of improved productivity and

predictability could be enabled. We weren't asking them to change anything about their own job,

and how they were working. Their identity, self-esteem, social status, respect with the organization,

and professionalism wasn't being called in to question or threatened in any way. Instead, we were
asking them simply to accept average cost as a fact, and its value as good enough to enable them to

make effective prioritization decisions.

Actually, this technique works well when there is significant asymmetry in the problem. When all

business values, significantly outweigh, any cost incurred, then the outcome of a stack ranking of

the ratios is not very sensitive to variation in the cost. Cost can effectively be ignored. Where cost

estimates have true value is when this asymmetry doesn't exist, and costs are actually relatively

close to the payoff labeled "business value." Ironically, this condition of relatively symmetric payoff

and cost is quite common in IT systems for shared service and back-office functions such as finance

and human resources. So, estimates of project costs are important when governing an IT portfolio

for back-office systems. However, with system maintenance and sustaining engineering, small

requests often have a huge impact - such as deploying the tax tables for the new fiscal year - and

hence the asymmetric payoff requirement is most certainly met in this case. In 2004, however, we

weren't that sophisticated, and neither were the product managers. They all bought the argument

and agreed.

The game was on! Kanban was green lit for deployment at Microsoft's XIT Sustaining Engineering

department. It was October 2004.

Implementing Changes

So, the changes were enacted. Dragos had their instance of Product Studio instrumented using

stored procedures in its database to enforce the kanban system WIP limits and signal free slots and

the ability to pull work using database triggers that sent automated emails. He cancelled the monthly

planning meetings and scheduled weekly conference calls to replenish the kanban system. New work

requested were no longer sent to Hyderabad for estimation.

It began to work. Requests were processed and released to production. Delivery times on new

commitments were met within the 25-day promise. The weekly meeting worked smoothly, and the

input buffer was replenished each week. Trust began to build with the product managers. Customers
began to see requests deployed to production quickly and within the promised SLA.

Evolutionary Relics

An evolutionary relic is something left behind by evolution that no longer serves any purpose but

for which there isn't a mechanism to remove it. Such relics appear in our own bodies. Our Coccyx

bone on the end of our spine is the obviated connector for a tail, and our appendix is left over from

an herbivore species from which we evolved into modern humans. There is some argument that our

gallbladder may be a similar relic. It seems we aren't quite sure what it is for, but just like our

appendix, if it goes wrong it can be rather serious and life-threatening. Evolutionary processes leave

behind artifacts and behaviors that are hard to explain and serve no purpose.
Paul Klipp, an American from Chicago, living in Krakow, Poland and founder of Kanbanery, a kanban

software tool, explained the concept on his blog11 on March 6th, 2013, after attending the Kanban

Coaching Professional (KCP) Masterclass,

I’ll enlist the help of a giraffe. His name’s Fred:

Like all mammals, Fred has a larynx controlled by his brain, and

Fred is the product of evolutionary change. Fred’s larynx is just

inches from his brain, because it’s at the top of his neck and so is

his head, as you might expect. Fred’s getting impatient, so he

bellows for me to get to the damn point. His brain got impatient

first and sent the impulse to bellow right down that nerve to his

larynx. A short trip? Not really. Silly evolution decided that the

best way to route a nerve between one thing on the top of his neck

and another thing on the top of his neck was to wrap it around his

aorta first.

Here’s Fred’s laryngeal nerve; it’s about 15 feet long:

Now who decided THAT was a good idea?

That’s where evolution gets you. It’s a hell of a lot better

than being a fish, at least from the giraffe’s point of view,

but the evolutionary path from fish to giraffe has some

constraints. The corresponding nerve in a fish makes

sense. A straight line between a fish’s brain and its gills

passes the heart, so the nerve crossing behind the heart is

pretty sensible. Here’s the thing, though. Evolution starts

with the existing processes and systems and changes

them incrementally. Re-routing a nerve is not an

incremental change; it’s a revolutionary change.

If true evolutionary processes are at work, awkward solutions evolve over time. You wouldn't

intentionally design a nerve to run down a giraffe's neck and back up again. It isn't logical or efficient,

but it is robust. The concept of "survival of the fittest" in evolutionary biology indicates that a solution

was fit for its environment. For us, we seek to evolve fit-for-purpose business services. Being fit-for-

purpose is likely to indicate an ability to survive and continue. The ability to respond to stress in the

environment and continuous evolve to remain fit for the ever-changing environment is what Nassim

Nicholas Taleb labeled anti-fragility. Kanban as a means to wire a business with evolutionary DNA

provides a means to anti-fragility.

11 http://paulklipp.com/blog/evolutionary-change-better-than-a-kick-in-the-nuts/

http://paulklipp.com/blog/wp-content/uploads/2013/03/wpid-IMG_20130306_125841.jpg
http://paulklipp.com/blog/wp-content/uploads/2013/03/wpid-IMG_20130306_130451.jpg

Meanwhile, if you walk into a company and everything is too neat and tidy, all of the process are

efficient, lean and devoid of artifacts or activities that seem to serve little purpose, have little or no

value and may have been obviated by circumstances of new techniques, then you are looking a
designed environment - the process consultants have been in, designed a new process, installed it,

perhaps through the use of position power, and then left. These designed solutions are fragile and

the businesses using them are fragile. Why?

When resistance is overcome using positional power, it is highly likely that employs were

acquiescing while their behavior is actually passive-aggressive. When management attention is

turned to something else, they'll quietly revert back to the old ways. They had no ownership in the
changes, and they haven't internalized it. It hasn't become "how we do things around here." It isn't

part of their identity individually or as a group. Evolutionary change is robust, while design and

managed change is fragile.

Prioritization - the evolutionary relic at XIT Sustaining Engineering

Returning to Dragos' story, we'll recall that he wasn't asking the product managers to change how

they were working, they would continue to make business cases and calculate ROI using their own

estimate of business value, and the IT engineers estimate of costs. They would continue to column

sort their spreadsheet to provide a stack ranking of change requests from highest to lowest ROI. They

had accepted the viability of using an average value for cost, effectively meaning that all change

requests were ranked by their business value.

Meanwhile, they'd bought into deferred commitment, they had no objection to switching to weekly

replenishment meetings and dropping the time-consuming monthly planning meeting. "So, let's all
do the Kanban!"

However, as soon as we start with Kanban, their prioritization work will instantly become an

evolutionary relic. Why? At a replenishment conference call, they may be asked to, "pick the one item

you'd most like for delivery within the next 25 days." This isn't a request for the item with the highest

return-on-investment, rather it is a request based on urgency or timeliness. An item deemed

important but perhaps not with the highest ROI, is likely to get selected. For example, "support Puerto

Rican address format for employee information form within the employee records application". This

isn't a request with a particularly high ROI. How do we even calculate the "business value" of such a

request and put a dollar value on it? Even if we do cook up some method to devise a number, it's

unlikely to produce the highest ROI. And yet, it will get picked! Why? Because the Puerto Rican office

is planned to open at the end of next month and we will need to be able to record details of the new
employees hired for that office.

Kanban replenishment questions are about urgency and timeless, not return-on-investment. Product

managers may have a spreadsheet filled with data and stack ranked and column-sorted by the ROI

calculation, but when it comes to the crunch, and making a decision during the replenishment

conference call, they'll find the item they most want "for delivery in 25 days or less," will not be the
item in row 2 of the spreadsheet. Consistently, they'll find their top picks are coming from further

down their list.

Their efforts to prioritize have been obviated. They are now selecting items from their pool of

available options based on the cost of delay of those items. What is the cost of delaying the new
Puerto Rican office because we can't on-board the employees. Cost of delay isn't the same as return-

on-investment. Effectively both methods are now in use: cost of delay; and return-on-investment.

One has obviated the other. The practice of calculating return-on-investment has become an

evolutionary relic.

This approach of leaving (some) existing practices in place while introducing new practices to replace
them is standard technique in applying evolutionary change. Effectively, ROI and Cost of Delay are

two species for the purpose of prioritization, or to use less ambiguous and more precise language,

sequencing of work. These two methods, the incumbent and the insurgent, will compete, like two

biological species compete to be fittest for the environment.

Imagine that ROI is the red squirrel, while cost of delay plays the role of the grey squirrel. Across

Europe and the British Isles, the two species will compete. Red squirrels, native to most of Eurasia

with a range from Portugal to Mongolia and including the British Isles, have been in decline in Europe

for centuries. Initially, through hunting and shrinking habitat, their decline has been rapid in the latter

half of the 20th Century. This accelerated decline is widely due to the arrival of grey squirrels. The

confusingly named "Eastern Gray", is actually an invader from North America where it takes its name

from its territory and the extent of its range along the eastern seaboard of the continent and inland

to the mid-west. Officially, it is recognized as having been introduced to the British Isles in 1948

though there are examples of earlier introductions, perhaps the earliest by, Herbrand Russell, the

11th Duke of Bedford12. He introduced greys from New Jersey to his Bedfordshire home, Woburn

Abbey, in 1890. Starting from the south of England, greys spread throughout the British Isles and to

mainland Europe.

Grey squirrels are significantly larger and more aggressive, particularly during springtime, and they

compete with the reds for nuts and other food. However, the bigger issue is that greys are carriers of

squirrel pox virus. This disease is deadly to red squirrels. The grey is in effect creating the reverse

effect of the conquistadors from Spain arriving in Central America where up to 90% of the population

perished from European diseases carried by the invaders. Red squirrels have been in severe decline.

In the UK most of the population is now isolated to Scotland and Cornwall, while in Europe, red

survive mostly on the Iberian Peninsula and appear to have been protected, thus far, by the Pyrenees

mountain range. What happened with the squirrels is in biology known as a DMI (a 'disease mediated

invasion').

With an evolutionary change approach in the workplace, the "Red Squirrel - Grey Squirrel Strategy"

12 http://www.telegraph.co.uk/news/earth/wildlife/12122377/11th-Duke-of-Bedford-blamed-for-unstoppable-
grey-squirrel-invasion.html
http://www.bbc.com/news/uk-england-beds-bucks-herts-35417747
http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_25-1-2016-15-38-49
https://www.ft.com/content/6d9fd8f0-c9ff-11e5-be0b-b7ece4e953a0

http://www.telegraph.co.uk/news/earth/wildlife/12122377/11th-Duke-of-Bedford-blamed-for-unstoppable-grey-squirrel-invasion.html
http://www.telegraph.co.uk/news/earth/wildlife/12122377/11th-Duke-of-Bedford-blamed-for-unstoppable-grey-squirrel-invasion.html
http://www.bbc.com/news/uk-england-beds-bucks-herts-35417747
http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_25-1-2016-15-38-49
https://www.ft.com/content/6d9fd8f0-c9ff-11e5-be0b-b7ece4e953a0

as we've come to call it, is used to reduce resistance. We don't ask individual or groups to give up a

particular practice, such as prioritization based on ROI, because "we don't think they'll go for that!"

Instead, we let the old practice continue, while we introduce into the environment, the practice that
we anticipate becoming its successor. If the new practice, such as selecting and sequencing work

based on urgency or timeliness, through an understanding of cost of delay, is successful, then we

expect the older practice of sequencing based on return-on-investment, to die out. However, with

stubborn environments, often where there is a tightly knit, highly cohesive social group, with a

conservative, risk averse, culture, or where a practice is particularly strongly associated with the

identity, self-esteem, ego, or social group status of individuals, then the old practice tends to stick
around. While the old practice has been obviated, and no longer plays a role in successful outcomes,

it survives. Time spent on it wasteful overhead and yet it remains. It's an evolutionary relic -

something hard to explain left behind by evolution change in action.

The abandonment guillotine

What happens to items that are never sufficiently important and sufficiently urgent - items that

simply never get selected in a replenishment meeting. A few months after the initial roll out, Dragos

recognized that a new policy was needed: Any item older than six months was purged from backlog,

closed as "abandoned." There was now an explicit abandonment guillotine policy. If it wasn’t

important enough to be selected within six months of its arrival, it could be assumed that it wasn’t

important at all. Such policies work on the assumption that every request for work has a mother - the

person who initiated the request. If the mother truly cares and the item is truly important, then it will

be resubmitted.

Dropping estimation had one further obstacle to adoption

You may recall from the previous chapter that there was a governance rule concerning operational
versus capital expenditure which stated that work requiring more than 15 days of engineering must

be routed to a project in the major project portfolio and accounted for as capital expense. If we don't

estimate, then how would we know whether something is too big or not?

This was solved by accepting that some might sneak through. We refer to this as the "credit card

security" solution. Credit card companies don't try to completely prevent fraudulent transactions on

credit cards - doing so, would make it so challenging to use a credit card, that many of us would revert

to cash or find other modern means of making payments. Instead credit card companies build an

allowance for fraud into their business models and they pay for using the margin they charge the

merchant for accepting credit card payments. When any of us use our credit cards, a percentage often

3- 4.5% is retained by the card company and not paid out to the merchant. Some of this money is

allocated to insure against fraudulent transactions. Credit card companies worked out that it was

better to take the risk of some bad things happening rather than eliminate the possibility but have
their business shrink significantly.

Historical data told us that these were less than two percent of requests rerouted as too big. Hence,

to retain the estimation effort to eliminate this two percent risk was bad economics. We were

spending 30-40% of our capacity on estimation. If the governance rules on accounting were the only

remaining reason to retain estimation, then it was a very bad bargain - who would pay 40 to insure

against a potential loss of 2? So, instead we decided to let the "too bigs" into the system and catch

them later.

Developers were instructed to be alert, and if a new request they started to work on appeared to
be large, and they estimated that it required greater than 15 days of effort, then they should alert

their local manager. If the item was confirmed with high confidence to be too big then it would be

rerouted to the major project portfolio. The risk and cost of doing this was less than one-half of one

percent of available capacity. It was a great tradeoff. By dropping estimates, the team gained more

than 3o percent of capacity at the risk of less than 1 percent of that capacity. This new policy

empowered developers to manage risk and to speak up when necessary!

Note: This is a common theme in the Kanban Method. The combination of explicit policies, transparency, and visualization

empowers individual team members to make their own decisions and to manage risks themselves. Management comes to

trust the system because they understand that the process is made of policies. The policies are designed to manage risk and

deliver customer expectations. The policies are explicit, work is tracked transparently, and all team members understand the

policies and how to use them.

What happened next?

The first two changes were left to settle in for six months. A few minor changes were made during

this period. As mentioned, a backlog purge policy was added; the weekly meeting with product

owners also disappeared. The process was running so smoothly that Dragos had the Product Studio

tool modified so it would send him an email when a slot became available in the input buffer. He

would then alert the product owners via email, who would decide among themselves who should

pick next. A choice would be made and a request from the backlog was replenished into the kanban

system within two hours of a slot becoming available.

Looking for Further Improvements

Dragos began looking for further improvement. He’d been studying historical data for tester

productivity from his team and comparing it with other teams within the XIT services at TCS in

Hyderabad. He suspected that his testers were not heavily loaded and had a lot of slack capacity. By

implication the developers were a significant bottleneck. He decided to visit the team in India. He sat

in their office for two weeks observing. On his return he instructed TCS to make a headcount-

allocation change. He reduced the test team from three to two and added another developer (Figure

4.6). This resulted in a near-linear increase in productivity, with the throughput for that quarter rising
from 45 to 56 change requests completed and deployed to production. He had correctly assessed

that there was slack capacity in test. Two testers were sufficient to handle the work coming from four

developers.

Microsoft’s fiscal year was ending in June 2005. Dale Christian, the General Manager, and his

leadership team were noticing the significant improvement in productivity and the consistency of

delivery from the XIT Sustaining Engineering (software maintenance) team. Finally, management
trusted in Dragos and the techniques he was employing. My phone rang!

"David, it's Dragos. Dale loves what we are doing. He sees the results. They've been reviewing the

annual budgets and I've been told I can hire two more people. So, I'm about to email TCS and ask

them for two more developers."

“I don’t think I would do that,” I replied.
“No?”

“I think there is a danger that two testers can’t handle the workload arriving from six developers.

I think, based on my admittedly only superficial understanding of your data, that two more

developers will turn testing into a bottleneck and you won’t get all the benefits you are expecting.

My gut feeling is that you should go for one of each – a new ratio of 5 developers to 3 testers. I think

that will work.”
I was using my knowledge of the Theory of Constraints and bottlenecks to give this advice. The

approach is explained in more depth in chapter 17.

Dragos added one more developer and one additional tester in July 2005. By the winter of 2006,

the results were significant as shown in figure 3.6 and 3.7.

Figure 3.6 XIT Sustaining Engineering, delivery rate of change requests versus cost per change

request

Figure 3.7 XIT Sustaining Engineering, Time to Resolve (TTR) or average lead time per change
request from commitment to deployment

Results

The additional capacity was enough to increase throughput beyond demand. The result? The backlog
was eliminated entirely on November 22, 2005. By this time the team had reduced the lead time to

an average of 14 days against an 11-day engineering time. The due-date performance on the 25-day

delivery time target was 98 percent. The throughput of requests had risen more than threefold, while

lead times had dropped by more than 90 percent, and reliability improved almost as much. No

changes were made to the software development or testing process. The people working in

Hyderabad were unaware of any significant change. The PSP/TSP method was unchanged and all the
corporate governance, process, and vendor-contract requirements were fully met. The team won the

Engineering Excellence Award for the second half of 2005. Dragos was rewarded with additional

responsibilities, and the day-to-day management of the team was handed off to the local line

manager in India, who relocated to Washington State to work on the Microsoft campus.

These improvements came about in part because of the incredible personality and managerial

skills of Dragos Dumitriu, but the basic elements of Kanban were key enablers: mapping a value

stream, analyzing flow, setting WIP limits, and implementing a pull system. Without the flow

paradigm and the kanban approach of limiting WIP, the performance gains would not have been

possible. Kanban enabled incremental changes with low political risk and low resistance to change.

By the fall of 2005 I began reporting the results initially via my blog, then at a Theory of Constraints

conference in Barcelona, and again in winter of 2006, at a Lean Product Development conference in

Chicago. That year others began to pick up the concept and replicate it. Most notably, Eric Landes at

automotive component manufacturer, Robert Bosch's South Bend, Indiana facility where he

replicated our results with a team doing software maintenance of intranet applications. At the time,

what we referred to as "a virtual kanban system for software engineering" was gaining broader

adoption and awareness. It wasn't yet the full Kanban Method as we know it today. That wasn't to

emerge until 2007 but the results at Robert Bosch validated that the approach was replicable and

that it did not require David or Dragos' leadership in order for it to work.

The XIT story shows how a WIP-limited pull system was implemented on a geographically

distributed IT service using offshore resources and an outsource vendor. The implementation was
facilitated with a software tracking tool. There was no visual board and many of the more

sophisticated features of the Kanban Method described later in this book had yet to emerge.

Nevertheless, what manager could ignore the possibility of similar results? Adopting a "start with

what you do now" evolutionary approach to change using kanban systems was clearly an approach

worthy of reporting publicly for others to replicate and something that we both wanted to try again!

Takeaways

The first Kanban implementation at Microsoft improved productivity by greater than 3x,

dropped lead times by 92% and improved on-time delivery by 98%

Policies affect performance. Some policies, set by senior executives, must be treated as

constraints and can't be easily changed

Stopping estimating was a choice, other options were available: isolate the disruption of

estimation in a time slice; isolate the disruption of estimation using a specialist estimator

role; combine the other two options with a specialist role which rotated between team

members. These other options were rejected because they improved predictability but

didn't recover any wasted capacity.

Input buffer sizing should anticipate the maximum anticipated delivery rate in the time period

between replenishment meetings. The goal is to insure that the first activity in the workflow

is never starved of new work to start, and its workers are consequently never idle.

A buffer between two activities may be desirable to smooth flow due to variability in local cycle

times in each activity

Sometimes initial buffer sizing can be arbitrary. From empirical observation over 10 years, a WIP

of 5 is often a good starting position. From there, the size can be adjusted up or down as

observations are made on how heavily it is used

Abandoning traditionally planning, and switching to deferred commitment and a service level

agreement for delivery expectations is a core concept in Kanban. Traditional planning often

encourages early commitment, leading to re-planning and re-scheduling of work. This can

be a source of dissatisfaction for customers.

Once a proposed kanban system is designed for a service delivery workflow, it is important to

anticipate who might object to making the switch

Generally, people who will raise objections are those who have their identity, self-esteem, or

social status anchored in the skillful execution of a specific practice. A suggestion to change

or remove such a practice will meet with resistance

Shuttle diplomacy and meeting with individual stakeholders to explain the proposed changes is

highly recommended. Get individuals to agree and commit to the changes before holding a

group kick-off meeting

Evolutionary change processes can leave behind strange historical artifacts or obviated

practices. These are known as evolutionary relics

An approach to changing a practice that will invoke resistance and defensiveness from some

individuals is to introduce the new, hopefully replacement practice, alongside the

incumbent.

The approach of introducing the intended successor, alongside the incumbent practice, is known

as the Red Squirrel - Grey Squirrel Strategy

Use of a time limit on submitted requests, is useful to prevent backlogs growing to a large and

unmanageable size. The time limits are known as Abandonment Guillotines

Sometimes there may be an advantage to letting something bad happen, so long as it can be

detected quickly and its impact minimized, than spending a lot of effort upfront to prevent

it from happening at all. Risk avoidance can be more expensive and wasteful than risk

mitigation. This concept is refer to as the Credit Card Fraud Solution.

When adding people or automation equipment to a service delivery workflow and kanban

system, it is important to consider where to place the additions, and to avoid accidentally

creating a bottleneck that limits the value and improvement produced

